پایداری مشتقها روی جبرهای باناخ وc^{*} جبرها

thesis
abstract

در این پایانامه ما پایداری هایرز-اولام-راسیاس از مشتقها روی جبرهای باناخ وc^{*} جبرهارا مورد بررسی قرار می دهیم.

First 15 pages

Signup for downloading 15 first pages

Already have an account?login

similar resources

نگاشت‌های نگهدارنده جفت‌های عملگری باناخ روی جبرهای عملگری

فرض کنید ‎$mathcal{B(X)}$‎ جبر شامل تمام عملگرهای خطی کران‌دار روی فضای باناخ ‎$mathcal{X}$‎ و ‎$phi:mathcal{B(X)}longrightarrow mathcal{B(X)}$‎ یک نگاشت جمعی دوسویی باشد که جفت عملگری باناخ را از دو طرف حفظ می کند. در این مقاله، نشان می دهیم که به ازای هر ‎$A in mathcal{B(X)}$‎ و ‎$x in mathcal{X}$‎، اسکالرهای ‎$alpha‎ , ...

full text

عناصرمعکوس تعمیم یافته در جبرهای باناخ وc*-جبرها

فرض کنید a یک جبر باناخ باشد. عنصر a در a را معکوس پذیر درازین گوییم هرگاه b در a و عدد صحیح kموجود باشند که در شرایط زیر صدق کند a^kba^k=a^k, a=aba, ab=ba عنصر aدر a را معکوس پذیر تعمیم یافته گوییم اگر b در a موجود باشد که aba=a, bab=b اگر a یک *c -جبر باشد، a در a را معکوس پذیر مور-پنروز گوییم هرگاه x در a موجود باشد که xax=x, axa=a, (ax) ^*= ax , (xa)^*= xa در این پایان نامه ایده...

جبرهای باناخ انقباض پذیر

فرض کنید یک جبر باناخ باشد. ما نشان می دهیم که اگر یک ایده ال انقباض پذیر ازیک جبر باناخ باشد آنگاه برقرار است. سپس وجود یک خود توان می نیمال مرکزی را در یک جبر باناخ انقباض پذیرکه یک تابعک ضربی نا صفر روی آن موجود باشد ثابت می کنیم. همچنین مفهومb- انقباض پذیری و یکی از فرم های معادل آن را معرفی می کنیم و با مثالی نشان می دهیم که b- انقباض پذیری به طور اکید از انقباض پذیری ضعیف تر است.

full text

C*-جبرها و جبرهای کامیان-پسک تجزیه ناپذیر

فرض کنیم A یک گراف سطری- متناهی و K یک میدان است. در این مقاله، به مطالعه تجزیه‌پذیری جبر کامیان-پسک KP(A) و C*-جبر C*(A) متناظر با A می‌پردازیم. به ویژه، به کمک ویژگی‌های A و گروه‌وار G_A ، شرایط لازم و کافی برای این تجزیه‌پذیری ارایه می‌شود. علاوه بر این نشان می‌دهیم در شرایط خاص می‌توان جبر کامیان-پسک را به‌صورت حاصل‌جمع مستقیم متناهی از جبرهای کامیان-پسک تجزیه‌ناپذیر نوشت.

full text

پایداری معادلات تابعی روی جبرهای باناخ ناارشمیدسی

این پایان نامه شامل 5 فصل می باشد که به پایداری معادلات تابعی و همریختی ها و مشتق ها در فضاهای مختلف می پردازد که مهمترین این فضاها فضای جبرهای باناخ ناارشمیدسی می باشد و همچنین معادلات جدیدی معرفی شده اند که به حل آنها می پردازیم.

15 صفحه اول

مرکز توپولوژیکی ضعیف از دوگان دوم جبرهای باناخ

در این مقاله برای اولین بار مفهوم جدیدی به عنوان مرکز توپولوژیکی ضعیف چپ و راست برای دوگان دوم جبرهای باناخ a ، را تعریف کرده و رابطۀ آن را با آرنز منظم پذیری بررسی می کنیم.

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


document type: thesis

وزارت علوم، تحقیقات و فناوری - دانشگاه سمنان

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023